

VeriCAV – Simulation Framework for Evaluating ADS Performance

Context – Automated Driving System Verification

Millions of driven miles required

Multi-pillar approach – Virtual simulation a key pillar

Simulation – offers efficiency, repeatability, controllability

Scenario based testing

- Industry Lead
- End user interface
- Automated scenario generation and analysis
- Interfacing with ADS

- Project Management
- Systems Engineering
- Dissemination

 A variety of intelligent actors to populate scenarios

Expertise in wider simulation eco-system

Challenges addressed in VeriCAV

Challenges in Scenario-based Testing:

- 1. How can scenarios be described in a way that:
 - 1. captures the complexity of diverse scenario sets,
 - 2. allows automated scenario creation,
 - 3. and can be unambiguously interpreted by simulation tools?
- 2. How can the onerous activity of manual scenario generation be automated and made more efficient?
- 3. Ensuring results from Simulation are valid
- 4. Ensuring the use of the framework with different ADSs
- 5. How can virtual simulation coverage be ensured in an efficient manner?
- 6. How can test success be assessed in virtual simulations?

Introduction to the Framework

Framework Architecture

Scenario attributes

- Attribute database
- Structured description (e.g. PEGASUS layers)
- Logical scenarios:
 - Parameter range, resolution, and probability distribution

Configurable constraints

- Operational Design Domain (ODD)
- Simulation capability
- System design and functionality
- Test objectives

i.e. different gaps in traffic

Challenge

- Represent richness of human behaviour in simulation
- Dynamic interactions

Diverse Approach

- **Machine Learning**
- Game theory

Enrich.

5 -Optimise

1 - Specify

- Choice models
- Cognitive models

4 -Analyse

Scenarios

- Area of road-user conflict
- Pedestrian crossings & turning across traffic
- Advanced cases inc. complex roundabouts and highway merge

1 - Specify

5 -Optimise

Simulation Integration

Automating the Test Analysis – Test Oracle

Automated acceptance criteria

- Generated scenarios require generated acceptance criteria
- Need to reduce human workload
- Account for scenario context how complex was the driving task

Quantified performance metrics

- Not just pass/fail, looking for performance degradation
- Evaluation from multiple perspectives:
 - e.g. Mobileye Responsibility Sensitive Safety (RSS)
 - Legality
 - Etiquette to other road users

Occupant Comfort - Oracle Layer

Goal: Automatically assess the ADS in relation to the comfort of future occupants

Validate the oracle assessment with real participants in Virtual Reality experiment

Metrics:

Test Oracle - Approach

Simulation data

- Ego telemetry data
- · Actor telemetry data
- Road geometry

Energy saving

Comfort

Legality

Metrics

Assessment Summary ☑ ☑

 $\overline{\checkmark}$

×

 $\sqrt{}$

Optimise subsequent scenarios

Challenges – Validating Simulation

Ensuring results from Simulation are representative

No simulation tool is currently sufficient for verification of a complete highly automated driving system.

Pragmatic solution:

- Interchangeable simulation tools to utilise future developments
- Open Simulation Interface (OSI) standardisation to support this interchange
- Focus on decision-making bypassing sensor modelling
- Physical test track and pedestrian simulation facility to validate the simulation results.

Challenges – Maximising reuse

Maximising the use of the framework with different ADSs

Pragmatic solution:

- Bridges maintain simulation tool interface while allowing new Automated Driving Systems to be connected.
- Implemented Apollo, conducting feasibility for other Automated Driving Systems

ADS Under Test ACIANI

- Reduction in human involvement
 In setting up scenario Test generator
 In analysing scene Test oracle
- Flexible framework independent of simulation tool - Sim master
- Rich eco-system of actors to create challenging test scenarios – Smart actors

Alan.Peters@cp.catapult.org.uk
Thomas.Levermore@cp.catapult.org.uk

Follow project developments:

https://www.linkedin.com/company/vericav-project/

@VeriCAVProject

News and downloads available from:

https://vericav-project.co.uk/

Including: VeriCAV Introduction Paper